Commuter couples and careers
Moving together for him and apart for her

Marta Murray-Close

University of Massachusetts Amherst

Minnesota Population Center
February 8, 2016
Marriage: A universal institution that involves a man and a woman living together, engaging in sexual activity, and cooperating economically (George Murdock, 1949)
The co-location problem

Best job for wife

Best job for husband

Okay job for both
The two-body problem

- Only
 - Best job for wife

- Only
 - Best job for husband

- Okay job for both
Co-residential couples prioritize men’s employment

- Men’s human capital predicts migration more strongly than women’s (Compton and Pollak, 2007; McKinnish, 2008)
- Family migration harms women’s employment and earnings (Smits, 1999; McKinnish, 2008; Cooke et al., 2009)
Why do couples prioritize men’s employment?

- **Human capital** (Sandell, 1977; Mincer, 1978; Guler et al., 2012)
- **Gender-role attitudes** (Bielby and Bielby, 1992; Jürges, 2006; Cooke, 2008)
Living apart may level the playing field

- “Commuter couples” express egalitarian commitments (Gross, 1980; Gerstel and Gross, 1982; van der Klis and Mulder, 2008; van der Klis and Karsten, 2009)

- But don’t know if
 - Qualitative findings are representative
 - Commuter couples are more egalitarian than others

- To test competing models, need representative data with
 - Noncohabiting and cohabiting couples
 - Information about both spouses
Question: Does specialized human capital increase the probability of marital noncohabitation more for women than for men?

Method: Use data from the ACS to construct a sample of previously noncohabiting couples.

Answer: Yes.
Hard to find data on commuter couples

- Need large dataset
- Need information about living arrangements
- Need information about both partners
Previous work on commuter couples

“Living Apart, Advancing Together: Commuter Couples and the Tenure-Track Gender Gap in the US Economics Job Market”

- **Question**: Do the cause and consequences of commuting differ by gender?
- **Data**: Longitudinal survey of new entrants to US junior PhD job market in economics
- **Method**: Regressions controlling for academic background, partner education, and family circumstances
- **Results**: Commuting predicts tenure-track employment more strongly for women
- **Results**: PhDs with egalitarian gender-role attitudes are more likely to commute
Help from the American Community Survey?

Can identify people who are

1. Married
2. In a household without their spouse

- Pro: Captures all noncohabitors in the cross section
- Con: Know nothing about absent spouse
Help from the American Community Survey?

Can identify couples who are

1. Married
2. Living in the same household
3. Lived in different locations one year ago
4. Were married one year ago

- **Pro**: Have matched information about spouses
- **Con**: Captures only noncohabitators who reunite
- **Con**: Underrepresents long-term noncohabitators
Data

Integrated Public Use Microdata Series (IPUMS)
 ↦ American Community Survey (ACS)
 ↦ 2008-10 three-year sample

Baseline sample includes people
 ▶ Age 25 to 59
 ▶ Employed in last five years
 ▶ Last worked in civilian occupation
 ▶ Lived in US last year
What qualifies as living in different locations?

<table>
<thead>
<tr>
<th>Highest degree</th>
<th>Migration defined as moving to different...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PUMA</td>
</tr>
<tr>
<td>Less than bachelor’s</td>
<td>0.048</td>
</tr>
<tr>
<td>Bachelor’s</td>
<td>0.058</td>
</tr>
<tr>
<td>Master’s</td>
<td>0.058</td>
</tr>
<tr>
<td>Professional</td>
<td>0.065</td>
</tr>
<tr>
<td>Doctoral</td>
<td>0.079</td>
</tr>
</tbody>
</table>

Note: Sample for second definition excludes people currently or previously living in PUMAs that cross metropolitan boundaries.
Prevalence of marital noncohabitation

Proportion living apart from spouse

<table>
<thead>
<tr>
<th>Highest degree</th>
<th>Different households now</th>
<th>Different PUMAs last year</th>
<th>Different states last year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than bachelor’s</td>
<td>0.0525</td>
<td>0.0040</td>
<td>0.0019</td>
</tr>
<tr>
<td>Bachelor’s</td>
<td>0.0270</td>
<td>0.0035</td>
<td>0.0019</td>
</tr>
<tr>
<td>Master’s</td>
<td>0.0246</td>
<td>0.0041</td>
<td>0.0023</td>
</tr>
<tr>
<td>Professional</td>
<td>0.0249</td>
<td>0.0047</td>
<td>0.0029</td>
</tr>
<tr>
<td>Doctoral</td>
<td>0.0371</td>
<td>0.0083</td>
<td>0.0059</td>
</tr>
</tbody>
</table>

Notes: Sample for first definition is married men and women in baseline sample. Sample for second and third definitions is co-residential married couples with both spouses in baseline sample.
Baseline model

\[
\log \left(\frac{P(E = 1)}{P(E = 0)} \right) = \beta_0 + E_{d_h} \beta_1 + E_{d_w} \beta_2 + X_c \beta_3
\]

\(X_c\) contains

- husband’s and wife’s race and ethnicity
- husband’s and wife’s age and age squared
- presence of children age 0-5, age 6-12, and age 13-17
- state and metropolitan status one year ago
Baseline controls: Race and ethnicity

<table>
<thead>
<tr>
<th>Race and ethnicity</th>
<th>Migration</th>
<th>Noncohabitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>White husband</td>
<td>1.246*</td>
<td>0.818</td>
</tr>
<tr>
<td></td>
<td>(0.056)</td>
<td>(0.095)</td>
</tr>
<tr>
<td>White wife</td>
<td>1.185*</td>
<td>0.888</td>
</tr>
<tr>
<td></td>
<td>(0.053)</td>
<td>(0.103)</td>
</tr>
<tr>
<td>Non-Hispanic husband</td>
<td>1.137*</td>
<td>1.038</td>
</tr>
<tr>
<td></td>
<td>(0.060)</td>
<td>(0.145)</td>
</tr>
<tr>
<td>Non-Hispanic wife</td>
<td>1.189*</td>
<td>0.798</td>
</tr>
<tr>
<td></td>
<td>(0.062)</td>
<td>(0.108)</td>
</tr>
</tbody>
</table>

Notes: Standard errors in parentheses. *Estimate is statistically significant, \(p < 0.05 \). Models include demographic controls. Sample is co-residential married couples with both spouses in baseline sample.
Baseline controls: Children

Relative risk ratios from logistic regressions

<table>
<thead>
<tr>
<th>Children in household</th>
<th>Migration</th>
<th>Noncohabitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child(ren) age 0-5</td>
<td>1.017</td>
<td>0.636*</td>
</tr>
<tr>
<td></td>
<td>(0.026)</td>
<td>(0.050)</td>
</tr>
<tr>
<td>Child(ren) age 6-12</td>
<td>1.012</td>
<td>0.817*</td>
</tr>
<tr>
<td></td>
<td>(0.027)</td>
<td>(0.063)</td>
</tr>
<tr>
<td>Child(ren) age 13-17</td>
<td>0.881*</td>
<td>0.889</td>
</tr>
<tr>
<td></td>
<td>(0.029)</td>
<td>(0.078)</td>
</tr>
</tbody>
</table>

Notes: Standard errors in parentheses. *Estimate is statistically significant, \(p < 0.05 \). Models include demographic controls. Sample is co-residential married couples with both spouses in baseline sample.
Baseline model

Relative risk ratios from logistic regressions

<table>
<thead>
<tr>
<th>Highest degree</th>
<th>Migration</th>
<th>Noncohabitation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Husband</td>
<td>Wife</td>
</tr>
<tr>
<td>Bachelor’s</td>
<td>1.555*</td>
<td>1.252*‡</td>
</tr>
<tr>
<td></td>
<td>(0.047)</td>
<td>(0.037)</td>
</tr>
<tr>
<td>Master’s</td>
<td>2.052*</td>
<td>1.140*‡</td>
</tr>
<tr>
<td></td>
<td>(0.079)</td>
<td>(0.044)</td>
</tr>
<tr>
<td>Professional</td>
<td>2.040*</td>
<td>1.253*‡</td>
</tr>
<tr>
<td></td>
<td>(0.115)</td>
<td>(0.080)</td>
</tr>
<tr>
<td>Doctorate</td>
<td>3.158*</td>
<td>1.253*‡</td>
</tr>
<tr>
<td></td>
<td>(0.196)</td>
<td>(0.100)</td>
</tr>
</tbody>
</table>

Notes: Standard errors in parentheses. Estimate is statistically significant, *$p < 0.05$. Estimates for husbands and wives are statistically different, ‡$p < 0.05$, †$p < 0.10$. Omitted category is less than bachelor’s. Models include demographic controls. Sample is co-residential married couples with both spouses in baseline sample.
Sex differences in occupation within education

Proportion in occupation by education and sex

<table>
<thead>
<tr>
<th>Highest degree</th>
<th>Men</th>
<th>Women</th>
<th>Prop.</th>
<th>Prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than bachelor’s</td>
<td>Driver/sales workers and truck drivers</td>
<td>Secretaries and admin. assistants</td>
<td>0.058</td>
<td>0.064</td>
</tr>
<tr>
<td></td>
<td>Construction laborers</td>
<td>Health aides</td>
<td>0.034</td>
<td>0.039</td>
</tr>
<tr>
<td>Bachelor’s</td>
<td>Managers, not elsewhere classified</td>
<td>Elementary and middle school teachers</td>
<td>0.049</td>
<td>0.093</td>
</tr>
<tr>
<td></td>
<td>First-line supervisors of sales workers</td>
<td>Registered nurses</td>
<td>0.044</td>
<td>0.075</td>
</tr>
<tr>
<td>Master’s</td>
<td>Elementary and middle school teachers</td>
<td>Elementary and middle school teachers</td>
<td>0.064</td>
<td>0.208</td>
</tr>
<tr>
<td></td>
<td>Managers, not elsewhere classified</td>
<td>Postsecondary teachers</td>
<td>0.063</td>
<td>0.041</td>
</tr>
<tr>
<td>Professional</td>
<td>Lawyers, judges, and other judicial workers</td>
<td>Lawyers, judges, and other judicial workers</td>
<td>0.315</td>
<td>0.255</td>
</tr>
<tr>
<td></td>
<td>Physicians and surgeons</td>
<td>Physicians and surgeons</td>
<td>0.242</td>
<td>0.181</td>
</tr>
<tr>
<td>Doctoral</td>
<td>Postsecondary teachers</td>
<td>Postsecondary teachers</td>
<td>0.236</td>
<td>0.257</td>
</tr>
<tr>
<td></td>
<td>Physicians and surgeons</td>
<td>Psychologists</td>
<td>0.072</td>
<td>0.062</td>
</tr>
</tbody>
</table>

Notes: Table shows two most common occupations for men and women with each level of education.
Baseline model + occupational controls

\[
\log \left(\frac{P(E = 1)}{P(E = 0)} \right) = \beta_0 + E_d h \beta_1 + E_d w \beta_2 + X_c \beta_3 + Occ_h \beta_4 + Occ_w \beta_5
\]

Occ_h and *Occ_w* contain

- Measure of occupational location constraints
- Average wage in occupation
Measuring occupational location constraints

- Migration rate (McKinnish, 2008).
- Geographic clustering (Benson, 2015).
- Urban concentration (Compton and Pollak, 2007).
- Proportion not in birth state.
Measuring occupational location constraints

Largest occupations with very high proportion (between 0.49 and 0.72) of workers not in birth state:

- postsecondary teachers
- computer scientists, systems analysts, and web developers
- managers in marketing, advertising, and public relations
- lawyers, judges, magistrates, and other judicial workers
- software developers
- physicians and surgeons
- management analysts
- computer and information systems managers
- clergy
- editors, news analysts, reporters, and correspondents
- electrical and electronics engineers
- engineers, not elsewhere classified
- artists and related workers
- actors, producers, and directors
- writers and authors
Baseline model

Relative risk ratios from logistic regressions

<table>
<thead>
<tr>
<th>Highest degree</th>
<th>Migration</th>
<th>Noncohabitation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Husband</td>
<td>Wife</td>
</tr>
<tr>
<td>Bachelor’s</td>
<td>1.368*</td>
<td>1.200*†‡</td>
</tr>
<tr>
<td></td>
<td>(0.043)</td>
<td>(0.037)</td>
</tr>
<tr>
<td>Master’s</td>
<td>1.700*</td>
<td>1.070‡</td>
</tr>
<tr>
<td></td>
<td>(0.069)</td>
<td>(0.043)</td>
</tr>
<tr>
<td>Professional</td>
<td>1.452*</td>
<td>1.172*†‡</td>
</tr>
<tr>
<td></td>
<td>(0.098)</td>
<td>(0.087)</td>
</tr>
<tr>
<td>Doctorate</td>
<td>2.392*</td>
<td>1.112‡</td>
</tr>
<tr>
<td></td>
<td>(0.158)</td>
<td>(0.093)</td>
</tr>
</tbody>
</table>

Notes: Standard errors in parentheses. Estimate is statistically significant, *p* < 0.05. Estimates for husbands and wives are statistically different, ‡*p* < 0.05, †*p* < 0.10. Omitted category is less than bachelor’s. Models include demographic and occupational controls. Sample is co-residential married couples with both spouses in baseline sample.
Baseline + occupational controls

Relative risk ratios from logistic regressions

<table>
<thead>
<tr>
<th>Highest degree</th>
<th>Migration</th>
<th>Noncohabitation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Husband</td>
<td>Wife</td>
</tr>
<tr>
<td>High proportion not in birth state</td>
<td>1.332*</td>
<td>1.133*‡</td>
</tr>
<tr>
<td></td>
<td>(0.046)</td>
<td>(0.038)</td>
</tr>
<tr>
<td>Very high proportion not in birth state</td>
<td>1.029</td>
<td>1.064</td>
</tr>
<tr>
<td></td>
<td>(0.037)</td>
<td>(0.046)</td>
</tr>
<tr>
<td>Average wage</td>
<td>1.005*</td>
<td>0.997*‡</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.002)</td>
</tr>
</tbody>
</table>

Notes: Standard errors in parentheses. Estimate is statistically significant, *p < 0.05. Estimates for husbands and wives are statistically different, ‡p < 0.05, †p < 0.10. Omitted category is less than bachelor’s. Models include demographic and occupational controls. Sample is co-residential married couples with both spouses in baseline sample.
Conclusions

- Used ACS data to construct sample of previously noncohabiting husbands and wives who reunited in last year
- Consistent with previous research, men’s human capital predicts migration
- In contrast, women’s human capital predicts noncohabitation
Have we seen this before?

- Professional commitments carry a personal cost for women
- Commuter partnerships are like women keeping their names at marriage (Goldin and Shim, 2004)
- We need better data on multi-household families
- Commuter marriage challenges traditional definitions
Thank you!
Baseline model

Average marginal effects from logistic regressions

<table>
<thead>
<tr>
<th>Highest degree</th>
<th>Migration</th>
<th>Noncohabitation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Husband</td>
<td>Wife</td>
</tr>
<tr>
<td>Bachelor’s</td>
<td>0.0563*</td>
<td>0.0294*‡</td>
</tr>
<tr>
<td></td>
<td>(0.0040)</td>
<td>(0.0039)</td>
</tr>
<tr>
<td>Master’s</td>
<td>0.1002*</td>
<td>0.0167*‡</td>
</tr>
<tr>
<td></td>
<td>(0.0060)</td>
<td>(0.0050)</td>
</tr>
<tr>
<td>Professional</td>
<td>0.0992*</td>
<td>0.0295*‡</td>
</tr>
<tr>
<td></td>
<td>(0.0093)</td>
<td>(0.0088)</td>
</tr>
<tr>
<td>Doctorate</td>
<td>0.1816*</td>
<td>0.0294*‡</td>
</tr>
<tr>
<td></td>
<td>(0.0123)</td>
<td>(0.0111)</td>
</tr>
</tbody>
</table>

Notes: Standard errors in parentheses. Estimate is statistically significant, *p < 0.05. Estimates for husbands and wives are statistically different, ‡p < 0.05, †p < 0.10. Omitted category is less than bachelor’s. Models include demographic controls. Sample is co-residential married couples with both spouses in baseline sample.
Baseline model + occupational controls

Average marginal effects from logistic regressions

<table>
<thead>
<tr>
<th>Highest degree</th>
<th>Migration</th>
<th></th>
<th>Noncohabitation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Husband</td>
<td>Wife</td>
<td>Husband</td>
<td>Wife</td>
</tr>
<tr>
<td>Bachelor’s</td>
<td>0.0399*</td>
<td>0.0238*†</td>
<td>−0.0023</td>
<td>0.0004</td>
</tr>
<tr>
<td></td>
<td>(0.0041)</td>
<td>(0.0040)</td>
<td>(0.0015)</td>
<td>(0.0014)</td>
</tr>
<tr>
<td>Master’s</td>
<td>0.0724*</td>
<td>0.0085†</td>
<td>0.0013</td>
<td>0.0035</td>
</tr>
<tr>
<td></td>
<td>(0.0060)</td>
<td>(0.0051)</td>
<td>(0.0021)</td>
<td>(0.0020)</td>
</tr>
<tr>
<td>Professional</td>
<td>0.0484*</td>
<td>0.0205†</td>
<td>−0.0079*</td>
<td>0.0069†</td>
</tr>
<tr>
<td></td>
<td>(0.0096)</td>
<td>(0.0100)</td>
<td>(0.0023)</td>
<td>(0.0042)</td>
</tr>
<tr>
<td>Doctorate</td>
<td>0.1316*</td>
<td>0.0136†</td>
<td>0.0001</td>
<td>0.0127†</td>
</tr>
<tr>
<td></td>
<td>(0.0119)</td>
<td>(0.0110)</td>
<td>(0.0032)</td>
<td>(0.0052)</td>
</tr>
</tbody>
</table>

Notes: Standard errors in parentheses. Estimate is statistically significant, *$p < 0.05$. Estimates for husbands and wives are statistically different, †$p < 0.05$, ‡$p < 0.10$. Omitted category is less than bachelor’s. Models include demographic and occupational controls. Sample is co-residential married couples with both spouses in baseline sample.